Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 198: 106543, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728797

RESUMEN

Understanding an animal's metabolic rate and thermal history is pivotal for ecological research. Recent studies have proposed the use of stable carbon and oxygen isotopes (δ13C and δ18O) in biogenic carbonates as proxies of metabolic rate and experienced temperature, respectively, to overcome the challenges of directly measuring these data in the field. Our study represents the first experimental investigation to develop δ13C and δ18O proxies in octopus. Octopus berrima hatchlings were raised in captivity, at varying water temperatures, for up to 110 days. O. berrima statoliths were then subsequently analysed for δ13C and δ18O values. The proportion of metabolically derived carbon, or respired carbon (Cresp), increased as the octopus grew (slope = 0.076, R2 = 0.72), suggesting an influence of somatic growth rate and body mass on δ13C values. Additionally, we identified an inverse correlation between δ18O values and environmental temperature (slope = -0.163, R2 = 0.91), which was subsequently used to develop a thermal reconstruction model. Our experiment aids in interpreting stable isotopic values in statoliths and their application as temperature and metabolic proxies in wild-caught octopus. Such proxies will increase our monitoring capabilities of these ecologically and commercially significant cephalopods and contribute to their conservation and effective management.

2.
Glob Chang Biol ; 30(4): e17255, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572638

RESUMEN

Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.


Asunto(s)
Octopodiformes , Animales , Temperatura , Cambio Climático , Calentamiento Global , Océanos y Mares
4.
PLoS One ; 18(7): e0288084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37437086

RESUMEN

Proteomics, the temporal study of proteins expressed by an organism, is a powerful technique that can reveal how organisms respond to biological perturbations, such as disease and environmental stress. Yet, the use of proteomics for addressing ecological questions has been limited, partly due to inadequate protocols for the sampling and preparation of animal tissues from the field. Although RNAlater is an ideal alternative to freezing for tissue preservation in transcriptomics studies, its suitability for the field could be more broadly examined. Moreover, existing protocols require samples to be preserved immediately to maintain protein integrity, yet the effects of delays in preservation on proteomic analyses have not been thoroughly tested. Hence, we optimised a proteomic workflow for wild-caught samples. First, we conducted a preliminary in-lab test using SDS-PAGE analysis on aquaria-reared Octopus berrima confirming that RNAlater can effectively preserve proteins up to 6 h after incubation, supporting its use in the field. Subsequently, we collected arm tips from wild-caught Octopus berrima and preserved them in homemade RNAlater immediately, 3 h, and 6 h after euthanasia. Processed tissue samples were analysed by liquid chromatography tandem mass spectrometry to ascertain protein differences between time delay in tissue preservation, as well as the influence of sex, tissue type, and tissue homogenisation methods. Over 3500 proteins were identified from all tissues, with bioinformatic analysis revealing protein abundances were largely consistent regardless of sample treatment. However, nearly 10% additional proteins were detected from tissues homogenised with metal beads compared to liquid nitrogen methods, indicating the beads were more efficient at extracting proteins. Our optimised workflow demonstrates that sampling non-model organisms from remote field sites is achievable and can facilitate extensive proteomic coverage without compromising protein integrity.


Asunto(s)
Octopodiformes , Animales , Proteómica , Cromatografía Liquida , Biología Computacional , Electroforesis en Gel de Poliacrilamida , Fijadores
5.
Rev Fish Biol Fish ; 33(2): 501-512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593873

RESUMEN

Seafood is an important source of protein and micronutrients, but fishery stocks are increasingly under pressure from both legitimate and illegitimate fishing practices. Sustainable management of our oceans is a global responsibility, aligning with United Nations Sustainable Development Goal 14, Life Below Water. In a post-COVID-19 world, there is an opportunity to build back better, where locally sourced food via transparent supply chains are ever-more important. This article summarises emerging research of two innovative case studies in detecting and validating seafood provenance; and using alternative supply chains to minimise the opportunity for seafood fraud in a post-COVID-19 world.

6.
Food Chem ; 371: 131133, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808758

RESUMEN

Octopus play an increasingly important role in ocean ecosystems and global fisheries, yet techniques for authenticating provenance are sorely lacking. For the first time, we investigate whether chemical profiling can distinguish geographical origins of octopus on international and domestic scales. Our samples consisted of wild-caught octopus from south-east Asia and southern Australia, regions with high seafood trade. We used a novel combination of stable carbon (δ13C) and oxygen (δ18O) isotope analyses (Isotope-Ratio Mass Spectrometry) of internal calcified structures called statoliths, with elemental analyses (X-Ray Fluorescence using Itrax) of soft-tissue. We found that multivariate profiles exhibited distinctive regional signatures, even across species, with high classification success (∼95%) back to region of origin. This study validates isotopic and multi-elemental profiling as an effective provenance tool for octopus, which could be used to support transparency and accountability of seafood supply chains and thus encourage sustainable use of ocean resources.


Asunto(s)
Octopodiformes , Animales , Isótopos de Carbono/análisis , Ecosistema , Espectrometría de Masas , Isótopos de Nitrógeno/análisis , Alimentos Marinos/análisis
7.
Front Psychol ; 12: 714321, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512473

RESUMEN

Scientific publications are the building blocks of discovery and collaboration, but their impact is limited by the style in which they are traditionally written. Recently, many authors have called for a switch to an engaging, accessible writing style. Here, we experimentally test how readers respond to such a style. We hypothesized that scientific abstracts written in a more accessible style would improve readers' reported readability and confidence as well as their understanding, assessed using multiple-choice questions on the content. We created a series of scientific abstracts, corresponding to real publications on three scientific topics at four levels of difficulty-varying from the difficult, traditional style to an engaging, accessible style. We gave these abstracts to a team of readers consisting of 170 third-year undergraduate students. Then, we posed questions to measure the readers' readability, confidence, and understanding with the content. The scientific abstracts written in a more accessible style resulted in higher readability, understanding, and confidence. These findings demonstrate that rethinking the way we communicate our science may empower a more collaborative and diverse industry.

8.
Scientometrics ; 126(7): 6127-6130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34024958

RESUMEN

"COVID" which stands for corona virus disease, has become the world's most infamous acronym. Previous analysis of acronyms in health and medical journals found a growing use of acronyms over time in titles and abstracts, with "DNA" as the most common. Here we examine acronyms in the pandemic year of 2020 to show the dramatic rise of COVID-related research. "COVID" was over five times more frequently used than "DNA" in 2020, and in just one year it has become the sixth most popular acronym of all time, surpassing "AIDS", "PCR" and "MRI".

9.
Elife ; 92020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32701448

RESUMEN

Some acronyms are useful and are widely understood, but many of the acronyms used in scientific papers hinder understanding and contribute to the increasing fragmentation of science. Here we report the results of an analysis of more than 24 million article titles and 18 million article abstracts published between 1950 and 2019. There was at least one acronym in 19% of the titles and 73% of the abstracts. Acronym use has also increased over time, but the re-use of acronyms has declined. We found that from more than one million unique acronyms in our data, just over 2,000 (0.2%) were used regularly, and most acronyms (79%) appeared fewer than 10 times. Acronyms are not the biggest current problem in science communication, but reducing their use is a simple change that would help readers and potentially increase the value of science.


Asunto(s)
Abreviaturas como Asunto , Literatura , Publicaciones Periódicas como Asunto/tendencias , Políticas Editoriales , Edición/normas , Edición/tendencias
10.
J Exp Biol ; 223(Pt 6)2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32220900

RESUMEN

Metabolic rate underpins our understanding of how species survive, reproduce and interact with their environment, but can be difficult to measure in wild fish. Stable carbon isotopes (δ13C) in ear stones (otoliths) of fish may reflect lifetime metabolic signatures but experimental validation is required to advance our understanding of the relationship. To this end, we reared juvenile Australasian snapper (Chrysophrys auratus), an iconic fishery species, at different temperatures and used intermittent-flow respirometry to calculate standard metabolic rate (SMR), maximum metabolic rate (MMR) and absolute aerobic scope (AAS). Subsequently, we analysed δ13C and oxygen isotopes (δ18O) in otoliths using isotope-ratio mass spectrometry. We found that under increasing temperatures, δ13C and δ18O significantly decreased, while SMR and MMR significantly increased. Negative logarithmic relationships were found between δ13C in otoliths and both SMR and MMR, while exponential decay curves were observed between proportions of metabolically sourced carbon in otoliths (Moto) and both measured and theoretical SMR. We show that basal energy for subsistence living and activity metabolism, both core components of field metabolic rates, contribute towards incorporation of δ13C into otoliths and support the use of δ13C as a metabolic proxy in field settings. The functional shapes of the logarithmic and exponential decay curves indicated that physiological thresholds regulate relationships between δ13C and metabolic rates due to upper thresholds of Moto Here, we present quantitative experimental evidence to support the development of an otolith-based metabolic proxy, which could be a powerful tool in reconstructing lifetime biological trends in wild fish.


Asunto(s)
Peces , Membrana Otolítica , Animales , Carbono , Isótopos de Carbono , Isótopos de Oxígeno
11.
Conserv Physiol ; 7(1): coz058, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798881

RESUMEN

Persistent hypoxic or low-oxygen conditions in aquatic systems are becoming more frequent worldwide, causing large-scale mortalities to aquatic fauna. It is poorly understood, however, whether species can acclimate to long-term hypoxic conditions. In two experiments, we exposed juvenile freshwater fish (Murray cod, Maccullochella peelii) to low-oxygen conditions and investigated acclimation effects. Experiment 1 determined how responses could be modified by exposure to different temperatures (20, 24 and 28°C) and oxygen conditions (control 6-8 mgO2 L-1 and low-oxygen 3-4 mgO2 L-1) over 30 days. Experiment 2 determined the acclimation ability of fish exposed to two temperatures (20 and 28°C) and low-oxygen conditions (3-4 mgO2 L-1) for three different acclimation periods (7, 14 and 30 days). Responses were measured by determining critical oxygen tension (P crit), loss of equilibrium and aerobic capacity using resting respirometry. In experiment 1, resting oxygen requirements were negatively affected by long-term low-oxygen exposure except at the highest temperature (28°C). However, long-term acclimation in low-oxygen improved tolerance as measured by loss of equilibrium but not P crit. In experiment 2, fish could tolerate lower oxygen levels before reaching loss of equilibrium after 7 days acclimation, but this declined overtime. Murray cod were most tolerant to low-oxygen at the lowest temperature (20°C) and shortest exposure time (7 days). Extended low-oxygen exposure resulted in reduced aerobic capacity of fish particularly at the lowest temperature. While prior exposure to low-oxygen may allow fish to cope with hypoxic conditions better in the long-term, acclimation time was inversely related to tolerance, suggesting that resistance to hypoxia might decrease as a function of exposure time. Our study fills a much-needed gap in our understanding of how freshwater species acclimate to hypoxia, and in particular, how exposure to prolonged periods of low-oxygen and elevated temperatures affect organisms physiologically.

12.
Proc Biol Sci ; 286(1906): 20190757, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31288703

RESUMEN

Increasing carbon emissions not only enrich oceans with CO2 but also make them more acidic. This acidifying process has caused considerable concern because laboratory studies show that ocean acidification impairs calcification (or shell building) and survival of calcifiers by the end of this century. Whether this impairment in shell building also occurs in natural communities remains largely unexplored, but requires re-examination because of the recent counterintuitive finding that populations of calcifiers can be boosted by CO2 enrichment. Using natural CO2 vents, we found that ocean acidification resulted in the production of thicker, more crystalline and more mechanically resilient shells of a herbivorous gastropod, which was associated with the consumption of energy-enriched food (i.e. algae). This discovery suggests that boosted energy transfer may not only compensate for the energetic burden of ocean acidification but also enable calcifiers to build energetically costly shells that are robust to acidified conditions. We unlock a possible mechanism underlying the persistence of calcifiers in acidifying oceans.


Asunto(s)
Exoesqueleto/química , Dióxido de Carbono , Gastrópodos/metabolismo , Exoesqueleto/anatomía & histología , Animales , Calcificación Fisiológica , Dieta , Herbivoria , Concentración de Iones de Hidrógeno , Nueva Zelanda , Agua de Mar/química
14.
Glob Chang Biol ; 25(3): 978-984, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30500999

RESUMEN

The pervasive enrichment of CO2 in our oceans is a well-documented stressor to marine life. Yet, there is little understanding about how CO2 affects species indirectly in naturally complex communities. Using natural CO2 vents, we investigated the indirect effects of CO2 enrichment through a marine food chain. We show how CO2 boosted the biomass of three trophic levels: from the primary producers (algae), through to their grazers (gastropods), and finally through to their predators (fish). We also found that consumption by both grazers and predators intensified under CO2 enrichment, but, ultimately, this top-down control failed to compensate for the boosted biomass of both primary producers and herbivores (bottom-up control). Our study suggests that indirect effects can buffer the ubiquitous and direct, negative effects of CO2 enrichment by allowing the upward propagation of resources through the food chain. Maintaining the natural complexity of food webs in our ocean communities could, therefore, help minimize the future impacts of CO2 enrichment.


Asunto(s)
Dióxido de Carbono , Cadena Alimentaria , Océanos y Mares , Agua de Mar/química , Animales , Organismos Acuáticos/fisiología , Biomasa , Carbono/metabolismo , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo
15.
Trends Ecol Evol ; 33(11): 812-813, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30213660
16.
Ecology ; 99(5): 1005-1010, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29714829

RESUMEN

Ecologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO2 -driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts.


Asunto(s)
Ecosistema , Kelp , Animales , Dióxido de Carbono , Humanos , Concentración de Iones de Hidrógeno , Agua de Mar
17.
Sci Rep ; 8(1): 1469, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362389

RESUMEN

Understanding the spatial distribution of human impacts on marine environments is necessary for maintaining healthy ecosystems and supporting 'blue economies'. Realistic assessments of impact must consider the cumulative impacts of multiple, coincident threats and the differing vulnerabilities of ecosystems to these threats. Expert knowledge is often used to assess impact in marine ecosystems because empirical data are lacking; however, this introduces uncertainty into the results. As part of a spatial cumulative impact assessment for Spencer Gulf, South Australia, we asked experts to estimate score ranges (best-case, most-likely and worst-case), which accounted for their uncertainty about the effect of 32 threats on eight ecosystems. Expert scores were combined with data on the spatial pattern and intensity of threats to generate cumulative impact maps based on each of the three scoring scenarios, as well as simulations and maps of uncertainty. We compared our method, which explicitly accounts for the experts' knowledge-based uncertainty, with other approaches and found that it provides smaller uncertainty bounds, leading to more constrained assessment results. Collecting these additional data on experts' knowledge-based uncertainty provides transparency and simplifies interpretation of the outputs from spatial cumulative impact assessments, facilitating their application for sustainable resource management and conservation.

18.
Oecologia ; 186(1): 37-47, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29110076

RESUMEN

Hypoxic or oxygen-free zones are linked to large-scale mortalities of fauna in aquatic environments. Studies investigating the hypoxia tolerance of fish are limited and focused on marine species and short-term exposure. However, there has been minimal effort to understand the implications of long-term exposure on fish and their ability to acclimate. To test the effects of long-term exposure (months) of fish to hypoxia we devised a novel method to control the level of available oxygen. Juvenile golden perch (Macquaria ambigua ambigua), and silver perch (Bidyanus bidyanus), two key native species found within the Murray Darling Basin, Australia, were exposed to different temperatures (20, 24 and 28 °C) combined with normoxic (6-8 mgO2 L-1 or 12-14 kPa) and hypoxic (3-4 mgO2 L-1 or 7-9 kPa) conditions. After 10 months, fish were placed in individual respirometry chambers to measure standard and maximum metabolic rate (SMR and MMR), absolute aerobic scope (AAS) and hypoxia tolerance. Golden perch had a much higher tolerance to hypoxia exposure than silver perch, as most silver perch died after only 1 month exposure. Golden perch acclimated to hypoxia had reduced MMR at 20 and 28 °C, but there was no change to SMR. Long-term exposure to hypoxia improved the tolerance of golden perch to hypoxia, compared to individuals held under normoxic conditions suggesting that golden perch can acclimate to levels around 3 mgO2 L-1 (kPa ~ 7) and lower. The contrasting tolerance of two sympatric fish species to hypoxia highlights our lack of understanding of how hypoxia effects fish after long-term exposure.


Asunto(s)
Percas , Perciformes , Animales , Australia , Peces , Agua Dulce , Hipoxia
19.
Curr Biol ; 27(20): R1104-R1106, 2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065288

RESUMEN

Rising levels of carbon dioxide (CO2)from fossil fuel combustion is acidifying our oceans [1,2]. This acidification is expected to have negative effects on calcifying animals because it affects their ability to build shells [3,4]. However, the effects of ocean acidification in natural environments, subject to ecological and evolutionary processes (such as predation, competition, and adaptation), is uncertain [5,6]. These processes may buffer, or even reverse, the direct, short-term effects principally measured in laboratory experiments (for example, [6]). Here we describe the discovery of marine snails living at a shallow-water CO2 vent in the southwest Pacific, an environment 30 times more acidic than normal seawater (Figure 1). By measuring the chemical fingerprints locked within the shell material, we show that these snails have a restricted range of movement, which suggests that they live under these conditions for their entire lives. The existence of these snails demonstrates that calcifying animals can build their shells under the acidic and corrosive conditions caused by extreme CO2 enrichment. This unforeseen capacity, whether driven by ecological or adaptive processes, is key to understanding whether calcifying life may survive a high-CO2 future.


Asunto(s)
Exoesqueleto/química , Dióxido de Carbono/análisis , Agua de Mar/análisis , Caracoles/química , Animales , Calcificación Fisiológica/fisiología , Concentración de Iones de Hidrógeno , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...